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ABSTRACT

Development of the coal-bed natural gas resource of the Powder River Basin of Wyoming and Montana has
proceeded rapidly, from fewer than 200 wells in 1995 to more than 22,000 wells in 2007. Continued development
of this resource will depend on minimization of water production during gas recovery as well as responsible use of the
produced water. Ideally, water should be withdrawn only from isolated coal aquifers to prevent any unnecessary water
withdrawal from overlying or underlying aquifers. This study uses the ratio of ¥St/*Sr of ground water to identify
hydraulically isolated coal seams. The ratio of ¥St/*Sr of ground water represents a time-integrated record of water—
rock interaction, such that water from aquifers composed of different rocks may acquire different Sr isotopic ratios.

Sr isotopic data are presented for 145 samples of ground water co-produced with coal-bed natural gas and 14
water samples from wells completed in sandstone aquifers in the Powder River Basin. The coal zone from which
each sample was collected was determined by analysis of gamma logs and correlation with the Wyoming State
Geological Survey database.

The Sr isotopic ratios and geochemical compositions of ground waters from coal in the Powder River Basin
of Wyoming are influenced by a number of factors, including the coal zone from which ground waters are pro-
duced, their residence time, the degree to which coal aquifers are confined, and geographic location. The data
indicate that the Upper Wyodak coal-zone aquifer in the Gillette and Schoonover areas in the eastern Powder
River Basin appears to be a well-confined, combined sand and coal aquifer unit. In contrast, the Wyodak Rider
coal zone aquifer may be only partially confined, allowing interactions between sandstone and possibly other
coal aquifers. Wells in this area exhibit highly variable Sr isotope ratios and total dissolved solids, and they also
are characterized by greater than average water/gas production ratios, consistent with incomplete isolation of the
Wyodak Rider coal zone. Faults in the northeastern part of the Powder River Basin may affect aquifer connectiv-
ity, either by acting as seals or conduits. Higher gas production correlates with lower Sr isotopic ratios in this part
of the basin. Although a correlation between Sr isotopic ratios of produced water with fracture pattern developed
during the well enhancement process might be expected, no strong relationship was observed. Evidently there
are many factors in addition to fracture pattern that control interactions between aquifers.

KEY WORDS: aquifer communication, coal-bed natural gas, Powder River Basin, produced water, sodium-
adsorption ratio, strontium isotopes, water quality.

INTRODUCTION United States. Powder River Basin coal provides
approximately 40 percent of all the coal consumed in

The Powder River Basin of northeastern the nation annually (473 million short tons in 2006;
Wyoming and southeastern Montana is one of the Bureau of Land Management-Wyoming; Energy
most significant energy-producing regions of the Information Administration Coal Report for 20006).
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Figure 1. Water and gas production in Powder River Basin, 1994-2006. Although the number of producing wells continues
to increase, water and gas production has remained fairly constant since 2002. Data from Wyoming Oil and Gas Conservation

Commission.

These Tertiary-age, nonmarine subbituminous coals
are valued for their low sulfur (-0.5% S) and ash
(6-7%) contents (Ellis, 1999; Lyman and Hallberg,
2000).

Powder River Basin coals also host an impor-
tant natural gas resource. Economically recoverable
reserves in the Wyoming parts of the Powder River
Basin are estimated at 25.2 trillion cubic feet (Bank
and Kuuskraa, 2006), approximately 10—15 percent
of the United States” natural gas reserve. Production
of this resource requires drilling a well to the target
coal seam, typically less than 2000 feet, under-ream-
ing the coal to create a large void, installation of a
submersible pump, and removing water from the coal
seam to reduce hydrostatic pressure, allowing the
methane to desorb and rise up the annular space of
the cased well (DeBruin and Lyman, 1999). After an
initial period of water production, a typical well pro-
duces 60,000 cubic feet (60 Mcf, 1700 cubic meters)
of methane per day and 4,500 gallons (17,000 liters) of
water per day (based on January, 2007 data from the
Wyoming Oil and Gas Conservation Commission,

2007). Total production in the Powder River Basin
as of January, 2007 is approximately 1,033,000 Mcf
(29,250,000 cubic meters) of methane per day and
78.2 million gallons (296 million liters) of water
per day (Wyoming Oil and Gas Conservation
Commission, 2007).

The natural-gas resource developed rapidly.
In Wyoming, the number of coal-bed natural gas
(CBNG) wells has increased from 152 wells in 1995
to more than 22,000 wells in 2007 (Fig. 1; Surdam
etal., 2007; Wyoming State Geological Survey Coal
Section, 2007). However, more recently the pace of
development has slowed due to concerns about ben-
eficial use and proper disposal of co-produced water
(Bank and Kuustraa, 2006). Water is a valuable
commodity in this semi-arid region, and produc-
tion of ground water from coal seams may decrease
water availability for agricultural and domestic use
in areas adjacent to CBNG activity. In 2003 (and
amended in 2006), the State of Montana issued stan-
dards for water quality in the Powder, Little Powder,
Tongue River, and Rosebud Creek watersheds
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(Administrative Rule of Montana 17.30.1670, 2007).
Because CBNG co-produced water discharged into
surface drainages could impact water quality down-
stream in Montana, these concerns have led to a shift
in water-disposal methods from untreated surface dis-
charge, either into impoundments (ponds) excavated
within existing channels or impoundments off exist-
ing channels, to treatment prior to surface disposal,
dispersal by means of atomization sprayers, or use of
produced water for surface and sub-surface irrigation
(Wheaton and Donato, 2004).

Responsible development of the CBNG resource
requires minimization of water production during
gas recovery. Ideally, water should be withdrawn only
from isolated coal aquifers to prevent wasteful and
unnecessary water withdrawal from any overlying
or underlying sandstone aquifers. The objective of
this study is to identify locations in the Powder River
Basin where coal seams are hydraulically isolated
from adjacent aquifers and hence water production
will be limited to the coal. Communication between
coals and adjacent aquifers can be the result of dep-
ositional setting or vertical fracturing during well
development. This study uses the ratio of ¥Sr/*¢Sr
of ground water to evaluate aquifer communica-
tion. The ratio of ¥Sr/*Sr of ground water represents
a time-integrated record of water—rock interaction,
such that water from aquifers composed of different
rocks may acquire different Sr isotopic ratios. This
present work builds upon the preliminary Sr isoto-
pic data from CBNG and monitoring wells presented
by Frost et al. (2002). That work showed that coal-
and sandstone-aquifer systems may have distinct Sr
isotopic compositions, and intermediate ratios may
indicate incomplete aquifer isolation or improper well
completion and therefore wasteful excess water pro-
duction. The initial work focused on a limited data
set from the eastern area of the Powder River Basin in
the vicinity of Gillette and Wright, Wyoming, and it
did not differentiate individual coal zones. Hence the
goals of this study are to address the following ques-
tions:

1. Do coal-aquifer and sandstone-aquifer waters
have distinctive Sr isotopic compositions
basin-wide?

2. Can different coal zones be identified by dis-
tinctive Sr isotopic compositions?

3. What are the geologic or geographic variables
that control coal-aquifer isolation?

4. Do Sr isotopic compositions correlate to frac-
ture patterns introduced during completion
of individual wells?

HYDROGEOLOGIC SETTING

The Powder River Basin is a 60,000 km? (23,000
mi?) asymmetric structural and sedimentary basin in
northeastern Wyoming and southeastern Montana
that formed during Late Cretaceous to early Tertiary
time as a Laramide foreland basin (Ayers, 1986; Flores
and Ethridge, 1985; Hinaman, 2005). The basin’s
axis trends north—northwest and is proximal to the
western margin (Fig. 2). The basin is bounded to the
east by the Black Hills, to the west by the Big Horn
Mountains and the Casper Arch, and to the south by
the Laramie Mountains and the Hartville Uplift. The
northern part of the basin in Montana is bounded by
the Miles City Arch and the Cedar Creek Anticline
(Montgomery, 1999). Coal seams are found in both
the Paleocene Fort Union Formation, which crops
out on the basin margins, and the overlying Eocene
Wasatch Formation. The uppermost member of the
Fort Union Formation, the Tongue River Member,
transitions into the Wasatch Formation without obvi-
ous lithologic change at the contact (Hinaman, 2005;
Glass, 1976). Both formations are composed of sand-
stone, siltstone, mudstone, conglomerate, limestone,
carbonaceous shale, and coal. In areas where the coal
beds split, fluvial channel sandstones or mudstones
are the interbedding strata (Flores and Bader, 1999).

Coal correlations across the basin are compli-
cated by the merging and splitting of coal seams
and by the use of local names in different parts of
the basin. In this study we adopt the nomenclature
of the Wyoming State Geological Survey (Wyoming
State Geological Survey Coal Section, 2007), which
divides the late Paleocene and Eocene coals into eight
coal zones. From stratigraphically lowest to highest,
the six coal zones within the Tongue River Member
of the Paleocene Fort Union Formation are the Basal
Tongue River, Sawyer, Knobloch, Lower Wyodak,
Upper Wyodak, and Wyodak Rider. The Eocene
Wasatch Formation includes the Felix and the overly-
ing Lake DeSmet coal zones (Fig. 3).

Davis (1976) described four major aquifers in the
Powder River Basin: (1) continuous coals with widely
variable transmissivity from 100 gal/day/ft to 10,000
gal/day/ft based on fracture concentration and conti-
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Figure 2, facing page. Generalized
map of asymmetric Powder River Basin,
showing basin axis along its western
margin as identified by Wyoming State
Geological Survey Coal Section (2007);
McLellan et al. (1990) suggested the axis
passes through Sheridan area and con-
tinues into Montana. Most coal produc-
tion is from open-pit mines along east-
ern margin of basin in Wyoming. Coal
bed methane production started west
of these mines in area near Gillette and
Wright, Wyoming and has since spread
westward and northward. Locations of
samples analyzed in this study are shown
by symbols that are keyed to coal zone
or sandstone aquifer from which water
samples were collected. Boxes outline
groups of wells discussed in text.

nuity; (2) clastic overburden and
underburden adjacent to the coals
including paleochannel sands, silt-
stone, and shale deposits, all with
low permeability and a high degree
of isolation from one another; (3)
clinker, produced by baking and
melting overburden during com-
bustion of coal beds, which has
porosities up to 35 percent and vari-
able transmissivity from 150 gal/
day/ft to 3,000,000 gal/day/ft; and
(4) alluvial aquifers noted for trans-
missivities of 200-500 gal/day/ft.
The regional topographic gradient
drives the basin-wide flow system
from the southwestern side of the
basin to the lower northeastern sec-
tion of the basin (McPherson and

Figure 3. Coal zones of Powder River
Basin. Eocene coal zones of Wasatch
Formation include Felix and overly-
ing Lake DeSmet. Paleocene coal zones
from are, from Fort Union Formation
are (stratigraphically lowest to highest)
basal Tongue River, Sawyer, Knobloch,
Lower Wyodak, Upper Wyodak, and
Wyodak Rider. Most coal-bed natural
gas is recovered from Lower Wyodak,
Upper Wyodak, and Wyodak Rider coal
zones. Coal-zone nomenclature is from
Wyoming State Geological Survey Coal
Section (2007).

Chapman, 1996). A potentiometric
surface map of the Upper Wyodak
coal seam produced by Daddow
(1986) suggests that recharge
and flow in the coal mimics the
recharge patterns inferred from the
topographic geometry of the basin.
Recharge that occurs near the coal
outcrop on the eastern margin is
driven by topographic gradient
westward toward the basin axis
and from the southern margin to
the north (Rankl and Lowry, 1985;
Daddow, 1986).

Ground-water residence times
are poorly known for Powder River
Basin aquifers. Pearson (2002)
suggested times of 7,000—70,000
years for ground water to flow
from the eastern recharge to the
central part of the basin based on
limited tritium data and Darcy’s

Law calculations. Residence-time
ages between the recharge area
and the most easterly wells in the
Sheridan area (Fig. 2) were esti-
mated between 1,200 and 12,000
years based on the proximity of
these wells to the recharge and
the hydraulic gradient (Pearson,
2002). These estimates are in gen-
eral agreement with a maximum
mean “C date of 21,000 years
as reported by Frost and Brinck
(2005) from an artesian well dis-
charging from a sandstone aquifer
in the center of the basin immedi-
ately west of the Powder River (sec.

19, T. 52 N., R. 77 W.).
METHODS

Water samples were obtained

from producing CBNG wells and

Formation Coal Zone Central Coal West Coal
Buffalo Cameron
Lake De Smet Murray
Wasatch Ucross
Felix Felix Bull Creek
Roland Baker
Wyodak Rider Smith Taft
Smith
Anderson Dietz 1
Upper Wyodak Lower Anderson Dietz 2
Canyon Dietz 3
Cook Monarch
Gates Carney
Wall B
Lower Wyodak Wall C
. Wall
Fort Union
. Wall D
(Tongue River
Member) Pawnee
Lower Pawnee
Knobloch Moyer Lower Moyer
Zed
Sawyer Dannar
Basal Tongue Terret
. Burly
River
Broadus
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from monitoring wells. Two well-casing volumes of
water were removed from monitoring wells prior to
sample collection; water from continuously pumping
CBNG wells was collected via bypass valves after a 5
second flushing period. Temperature and pH were
measured in the field. Samples were filtered through
a 0.45 micron filter and kept cool and dark prior to
analysis. One aliquot of each sample was acidified to
pH 2 for cation analysis.

Strontium was isolated from a 3 ml aliquot of
each un-acidified water sample using Teflon col-
umns filled with Eichrom® Sr-Spec resin and the
strontium isotopic composition determined by ther-
mal ionization mass spectrometry at the University of
Wyoming,. The internal precision of ¥St/*¢Sr isotope
ratio measurements is + 0.00001. Seventy-six analyses
of NBS 987 strontium standard measured during the
course of this study gave an average value of ¥ Sr/*Sr
=0.71026 + 0.00002 (2 standard deviations). All
analyses were normalized to an *¢St/*¥Sr ratio value of
0.1194. Analytical blanks were less than 0.2 ng, neg-
ligible compared to sample sizes of at least 0.1 micro-
gram strontium. Sr concentrations were determined
by ICP-MS or by isotope dilution.

Major cations and trace elements were measured
for the CBNG production wells by ICP-MS, sodium
(Na) by flame atomic absorption, anions by ion chro-
matography, and alkalinity by potentiometric titra-
tion at the University of Wyoming. TDS was calcu-
lated by summing the major ionic constituents and
converting bicarbonate into equivalent carbonate

(Drever, 1997).
SAMPLES

159 ground-water samples were analyzed for
this study and are interpreted along with 30 addi-
tional analyses reported in Frost et al. (2002). The
water samples were obtained with the assistance
of the U.S. Geological Survey (USGS), Coal Bed
Methane Associates of Laramie (CBMA), Inc., the
Casper office of the Bureau of Land Management
(BLM), Welldog Inc. with the cooperation of RMT
Williams Production Company, and Black Diamond
Production Company. These include 14 water sam-
ples from wells completed in sandstone aquifers. The
145 coal-aquifer samples include water produced from
the Eocene Wasatch Formation Lake DeSmet and
Felix coal zones and from the upper Paleocene Fort

Union Formation Wyodak Rider, Upper Wyodak,
Lower Wyodak, and Knobloch coal zones. Sr isotopic
data and selected water quality data for each sample
are reported in Table 1. Complete geochemical anal-
yses for 69 samples that were obtained by the authors
are available in Campbell (2007); water-quality data
for the remaining 90 samples were obtained from the
BLM, USGS, and CBMA, Inc.

The coal zone from which each CBNG-produced
water sample was collected was determined by anal-
ysis of gamma logs for each well, which are avail-
able from the Wyoming Oil and Gas Conservation
Commission and Montana Board of Oil and Gas
websites. The lithologic interpretations of these
logs were combined with the database used by the
Wyoming State Geological Survey to construct cross
sections and identify the coal zone from which the
water was withdrawn. The coal zones, along with
the coal-seam names filed by the producer with the
Wyoming Oil and Gas Conservation Commission
and Montana Board of Oil and Gas, are listed in
Table 1.

RESULTS

Water-quality Results

Lee (1981) showed that deep ground waters in the
Powder River Basin are uniformly of sodium-bicar-
bonate signature, but that shallow ground waters are
more variable in composition. His observations reflect
the geochemical evolution of water-recharging coal
aquifers, which Brinck et al. (i press) summarized as
composed of five steps. First, soluble salts that have
accumulated in the semi-arid soils of the basin re-
dissolve. Next, the water dissolves gypsum and salts
in the aquifer and incorporates products of pyrite
oxidation. These processes result in calcium-sulfate-
dominated ground waters. Third, sulfate reduction
consumes sulfate and generates bicarbonate. This
increase in bicarbonate causes precipitation of cal-
cite. Accompanying these steps is cation exchange
between water and aquifer materials, which removes
calcium and magnesium from the water and replaces
them with sodium. In addition, bacterially mediated
methanogenesis takes place in Powder River Basin
coals.

The major ion chemistry of water samples in this
study illustrates the geochemical evolution described
above. Waters from shallow wells in the Gillette area
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SRISOTOPES IN WATER CO-PRODUCED WITH COAL BED NATURAL GAS
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Figure 4. Trilinear diagram showing major ion composition of water from coal, clin-
ker, and sandstone aquifers in Powder River Basin. Although water samples from
shallow clinker, sandstone, and coal aquifers have variable composition, all waters
from deeper wells (>40 m or 125 ft) are of sodium-carbonate type. Data from this

study and Frost et al. (2001).

dence time than wells located farther
west. Plotted as a function of dis-
tance from recharge, TDS of coal-
aquifer waters increases with increas-
ing distance into the basin, and
values of TDS higher than 2,000
mg/L occur for samples collected
more than 45 km from recharge
(Fig. 7). Some shallow wells, ranging
in depth from 80 to 300 feet (25-92
m), in sandstone aquifers near the
recharge area also have high TDS
(Fig. 7). Water from these shallow
wells is also high in sulfate. High
concentrations of sulfur in wells sug-
gest that they have not yet under-
gone bacterial reduction of sulfate.
That process reduces the concentra-
tion of sulfate and increases the con-
centration of bicarbonate, causing

Ca and Mg to precipitate as carbon-
ates and decreasing TDS (Brinck et
al., in press). Disregarding these sam-
ples and considering only those that
have undergone sulfate reduction,
residence time appears to be more
important than depth of coal seam.
There is no strong correlation of
TDS with well depth, although all
CBNG well waters with high TDS
are from wells more than 1,000
ft deep. SAR also increases with
increasing distance from recharge
zone (Fig. 8), although there is con-
siderable variation.

Strontium Isotope Results

87St/*Sr ratios for the ground
waters in this study vary from
less than 0.711 to more than

0.715 (analytical uncertainty is +
0.00002). The ®Sr/%Sr ratios are
lowest in the Sheridan area along
the Montana—Wyoming border,
and the highest are along 106°
W longitude (Fig. 9). Water from
sandstone aquifers are generally
among the lowest ratios; most
are between 0.7083 and 0.7127,
although two samples have
87Sr/5Sr ratios > 0.713.

In most areas of the Powder
River Basin, 8Sr/%°Sr ratios for
ground water from different coal
zones are overlapping (Fig. 10).
However, in the Buffalo area,
water from the Lake DeSmet coal
zone is more radiogenic than water
from the Felix coal zone. Also, in
the Black Diamond development
area of the northeastern part of
the basin, water sampled from the
Lower Wyodak coal zone is more
radiogenic than water from the

Upper Wyodak coal zone.
DISCUSSION

Trends in Water Quality and
Sr Isotopic Composition in
Gillette—Schoonover Area

Because this part of the basin
was the first to be developed for the
CBNG resource, the preliminary
studies by Frost et al. (2001, 2002)
were focused on wells located
between Gillette and Wright (here
referred to as the Gillette area; see
area outlined on Fig. 2). Most of
these wells were completed in the
Upper Wyodak coal zone. Our
new analyses include a number
of samples further westward into
the basin, here referred to as the
Schoonover area (Fig. 2). Many of
these wells are completed within
the Wyodak Rider coal zone, in a
thick seam informally called “Big
George.” The TDS, SAR, and
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Figure 5. Total dissolved solids (TDS) in ground water co-produced with coal-bed natural gas. TDS are lowest in eastern parts of
basin, and highest values occur along 106° W longitude. Water-quality data from Table 1.

87St/%%Sr ratios for waters from these wells are plot-
ted in Figures 7, 8, and 11 as functions of distance
from the recharge area along the eastern margin of
the basin.

Water from the Upper Wyodak coal zone is low
in SAR (<10) and TDS (<1,000 mg/L), and TDS
increases slightly with increasing distance from the
recharge zone (Figs. 7 and 8). Water from the Wyodak
Rider coal zone extends the trend to higher TDS and
SAR, particularly for samples more than 50 km from
the recharge zone. The ¥St/*Sr ratios in waters of the
Upper Wyodak coal zone in the Gillette-Schoonover
area show an increasing ratio with increasing distance
from the recharge zone, as described by Frost et al.
(2002; Fig. 11). However, waters from the Wyodak
Rider coal zone fall below this trend and extend to

very low ratios. The sandstone-aquifer waters in the
Schoonover area are similarly low in ¥ Sr/*Sr.

The trend in results for TDS from CBNG co-
produced waters implies an increase in dissolved solids
with increased water-residence time. The correlation
of Sr/%Sr ratios in waters of the Upper Wyodak coal
zone with distance into the basin from the recharge
zone suggests that the #Sr/%¢Sr ratio increases with
increased water—rock interaction along the flow path.

Water from shallow-sandstone aquifers in the
Gillette and Schoonover areas has relatively unradio-
genic ¥Sr/*Sr isotopic ratios, irrespective of distance
from the recharge area (Frost et al., 2002; Brinck and
Frost, 2007). As a result, the distinction between
Upper Wyodak coal zone waters and water from
shallow-sandstone aquifers becomes pronounced for

Rocky Mountain Geology, v. 43, no. 2, p. 149175, 14 figs., 2 tables, November, 2008
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Figure 6. Sodium adsorption ratio (SAR) in ground water co-produced with coal bed natural gas. SAR is low along margins of
basin and highest in center at around 106 W longitude. SAR data from Table 1.

wells located more than 5 km into the basin. That
suggests the Upper Wyodak aquifer system is isolated
from other, shallower-sandstone aquifers.

In contrast, one ground-water sample collected
from a deep sandstone, G718 (1,450 ft), has a Sr isoto-
pic ratio and TDS indistinguishable from a neighbor-
ing Upper Wyodak well (1,448 ft deep). Moreover,
where Upper Wyodak coals are in direct contact with
overlying sandstones as determined from gamma-
log analysis (e.g., samples G13U, G14U, and G20U),
the water samples do not have the higher TDS and
lower ¥Sr/%¢Sr that might be expected if these wells
produced ground water from both coal and a chemi-
cally and isotopically distinctive sandstone aquifer.
These results suggest that the Upper Wyodak aquifer

is composite, composed of both coal and sandstone.

The chemical and isotopic characteristics of
ground-water samples from the Wyodak Rider coal
zone contrast with those from the Upper Wyodak
coal zone. A large range in TDS and ¥St/*Sr ratios
is observed in the Wyodak Rider coal zone waters,
particularly at 50 to 70 km into the basin from the
eastern recharge zone. In some cases this may reflect
well completion. Two of the wells, S6W and S7W are
perforated to draw water from the coal and overlying
sands. Hence elevated TDS and lower #St/*Sr ratios
reflect the introduction of water from both aquifers
into these wells. For other wells that are open only to
coal, the variability may indicate incomplete aquifer
isolation and resulting interaction of ground waters
between coal and sandstone aquifers. This hypoth-
esis is supported by a seismic survey conducted in the
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Figure 7. Total dissolved solids (TDS) as a function of distance from recharge zone
for samples located in Gillette and Schoonover areas. Some ground water from sand-
stone aquifers have high TDS. TDS for ground water from coal seams generally
increases with increasing distance from recharge; Wyodak Rider ground water sam-
ples in the Schoonover area are particularly high. Data from Table 1.

vicinity of 106° W longitude at
Burger Draw by Morozov (2002)
that imaged the Big George coal
(part of the Wyodak Rider coal
zone) and identified complex faule-
ing with offsets of approximately
10 meters (30 feet) within the Big
George coal and underlying strata.
This faulting could cause hydrau-
lic connections between coal and
other aquifers.

Many Wyodak Rider wells
produce higher water-to-gas ratios
than average for the Powder River
Basin. The average water/gas ratio
for 19,158 coalbed natural gas wells
that have produced for more than
two years is 1.8 bbls/mcf (Surdam
et al., 2007), Although 30 per-

cent of the wells studied here that
are completed in the Big George
seam of the Wyodak Rider coal
zone have average or below average
water/gas ratios, an equal number
have water/gas ratios greater than
20, and 15 percent exceed 100 (Fig.
12; Table 2; Wyoming Oil and
Gas Conservation Commission,
2007). By contrast, water/gas
ratios for other coal seams include
few to no ratios exceeding 20 (Fig.
4; Table 2; Wyoming Oil and Gas
Conservation Commission, 2007).
The intermediate Sr isotope ratios
and elevated TDS compared to
other coal aquifer waters, coupled
with evidence of faults in the sub-
surface, long dewatering periods

and minimal gas production, all
suggest that the Wydoak Rider
coal zone is not well isolated from
adjacent aquifers, particularly in
the vicinity of 106° W longitude.

We conclude that in the
Gillette-Schoonover area, the
Upper Wyodak coal zone appears
to be isolated, and thus CBNG
development likely removes water
only from a composite Upper
Wyodak aquifer system. On the
other hand, the TDS, SAR and
Sr isotopic characteristics of some
of the waters from Wyodak Rider
wells suggest that there may be
leakage from adjacent aquifers
when these wells are depressur-
ized, particularly in the center of
the basin.

Possible Influence of Faulting
on Sr Isotopic Composition of

Ground Water
Northeastern Area

The Sr isotopic data from the
northeastern part of the Powder
River Basin are more scattered
than those from the Gillette and
Schoonover areas (Fig. 13). Some
of the northeast samples plot above
the “Gillette trend” as defined by
the Upper Wyodak water samples
from the Gillette area (Fig. 13);
others plot below.

One distinction between the
northeastern area and the Gillette—
Schoonover areas is the presence
of mapped faults in the north-
east. These faults could act either
as seals or conduits for water and
gas flow. The group of samples
lying above the Gillette Sr isotopic
trend is located in the eastern part
of the Northeast area. These sam-
ples have comparatively low TDS
(<1,000 mg/L). The high 8 Sr/%Sr
ratios and low TDS suggest that
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Figure 8. Sodium-adsorption ratio (SAR) as a function of distance from recharge
area for samples in Gillette and Schoonover areas. As for TDS, SAR values are high-
est for water samples from Wyodak Rider coal zone, particularly in Schoonover area.

Data from Table 1.

these coals are well isolated from
sandstone aquifers and that if
faults influence the hydrology of
this area, they are acting as seals.
[t is noteworthy that none of these
wells has produced more than
500 MCF gas/month (Wyoming
Oil and Gas Conservation
Commission, 2007).

The group of samples lying
below the Gillette trend is located
northwest of the high ¥ Sr/*¢Sr ratio
group. These water samples also
have higher TDS (1,300-1,800
mg/L). The combination of low
87Sr/*¢Sr ratios and high TDS sug-
gests that in this area the coals
are not completely isolated, possi-
bly because the faults in this area
act as conduits to ground-water
flow. Wells in this area are associ-
ated with relatively high gas pro-

duction (typically >1.000MCF/
month; Wyoming Oil and Gas
Conservation Commission,
2007).

Sheridan Area
The Sheridan sample subset

also illustrates the possible role
of faults in increasing recharge
rates, decreasing residence time
of ground water in coal and
sandstone aquifers, and allowing
co-mingling of waters from dif-
ferent aquifer types. This area is
marked by a number of steeply
dipping, east—northeast-trend-
ing normal faults (Van Voast et
al., 1977; Kanizay, 1978; Love
and Christiansen, 1985). Coal-
aquifer waters of the Sheridan
area display lower Sr isoto-

pic ratios than those from the
Gillette area (Figs. 9 and 10) and
no correlation between isoto-
pic ratio and production depth.
Like the group of samples from
northeastern coal-aquifer water
with low #Sr/®°Sr ratios, the
TDS of these coal-aquifer waters
is elevated (700-1,900 mg/L)
relative to the TDS of the Upper
Wyodak samples near Gillette.
The relatively high TDS of both
the northeastern subset and
Sheridan area samples suggests
that the waters are in the initial
phase of ground-water evolu-
tion expected for ground waters
with short residence times. It is
possible that local faults may
serve as recharge zones for the
coal and sand aquifers. Fault
displacements in the Sheridan
area of 200-300 ft (Culbertson
and Mapel, 1976; Van Voast
and Hedges, 1975) could place
lithologies with different isoto-
pic and geochemical qualities in
direct contact, thus providing an
intermediate isotope signature
between coal and sandstone.
Little to no gas has been pro-
duced from any of these wells. The
low Sr isotope ratios and lack of gas
production suggest: (1) these sam-
ples are composed of water from
both coal and sandstone aquifers;
(2) faults in this region served as
conduits for ground-water recharge
and flow, complicating the depres-
surization process; and/or (3)
proximity to recharge area is not
favorable for coalbed natural-gas
production on the western side of
the basin. A combination of these
processes appears to limit gas pro-
duction and retard development
of distinct isotopic and chemical
characteristics in produced water
between coal and sand aquifers.
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Figure 9. ' St/*¢Sr ratios for water co-produced with coal-bed natural gas. Ratios increase from east to west, with highest ratios
occurring for samples from wells located at approximately 106° W longitude. Lowest ratios are from Sheridan area near Wyoming—

Montana border. Data from Table 1.

Geographic and Temporal Variability Due to
Depositional Systems and Sediment Provenance

Although the details are debated, there is gen-
eral agreement that the Paleocene and Eocene strata
of the Powder River basin were deposited in a flu-
vial/lacustrine environment. Ayers and Kaiser (1984)
envisioned a system of deltas supplying Lake Lebo.
Each delta had a different source area, and there-
fore may have transported clastic material with dif-
ferent #’Sr/®Sr ratios. Seeland (1992) suggested a
north-flowing fluvial system fed by various uplifts
around the basin. Cross bedding in the sandstone
aquifers of the Tongue River Member of the Fort
Union Formation and of the Wasatch Formation led
Flores (1986) to conclude that sediment was variously

sourced from the Big Horn Mountains, Casper Arch,
Laramie Mountains, Hartville Uplift, and Black
Hills. Some of the variations in ¥ St/*Sr ratio of water
produced from coals in different parts of the Powder
River Basin may reflect these differences in sediment
sources. For example, the samples from the Sheridan
area, which have the lowest #Sr/%Sr ratios, may
reflect the dominance of non-radiogenic strontium
from Paleozoic and Mesozoic limestone exposed in
the northern Big Horn Mountains.

Other variations in #Sr/*Sr ratio may reflect
temporal changes in depositional systems. For exam-
ple, CBNG is being developed in the Buffalo area
from the Eocene Lake DeSmet and Felix coals. The
Lake DeSmet coals have higher #St/*Sr ratios than
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Figure 10. ¥’St/%Sr ratios by coal zone and location in Powder River Basin. In most areas of Powder River Basin, #Sr/%Sr ratios
do not distinguish different coal zones. But in Buffalo area, water from Lake DeSmet coal zone is more radiogenic than water
from Felix coal zone. In Black Diamond development area of northeastern part of basin, water from Lower Wyodak coal zone is
more radiogenic than water from the Upper Wyodak coal zone. Data from Table 1.

underlying Felix coals, possibly reflecting an increase
in the amount of radiogenic (high #Sr/%Sr ratio)
Precambrian detritus being eroded from the Big
Horn Mountains as these were uplifted in Eocene
time (Whipkey et al., 1991).

Acolian dust may be an important source of the St
preserved in coal. A number of studies have determined
that the majority of Sr in plant material originates from
dry or wet deposition of atmospheric dust (Graustein
and Armstrong, 1983; Négrel et al., 1993). The dense,
woody vegetation of peat swamps may have trapped
airborne dust, and the low-energy environment of the
swamps may have allowed dust to settle and be preserved
during the coalification process. Some sources of acolian
detritus may be local, but fine atmospheric dust may
have been derived from great distances (e.g., Dymond
etal,, 1974). As for fluvially transported clastic material,
the ¥Sr/*Sr ratio of acolian dust deposited in the Powder
River Basin may vary spatially and temporally.

Correlation of Sr Isotopic Compositions to Water
Enhancement and Resulting Fracture Patterns

The water-enhancement process used to com-
plete CBNG wells in the Powder River Basin
hydraulically fractures the coal. Water is pumped
into the coal seam at a rate of 2,500 gallons per
minute for approximately 15 minutes, clean-
ing out the coal fines and inducing fractures that
may create pathways for gas and water to flow to
the wellbore. The orientation of these hydraulic
fractures can be determined from the wells’ com-
pletion records (Colmenares and Zoback, 2007).
Colmenares and Zoback (2007) found that wells
with horizontal fractures typically produce less gas
than wells with vertical fractures. Some wells with
vertical fractures are high water producers (more
than 10,000 barrels/month); a large fraction of
these produce no gas or have delays in gas produc-
tion of about 12 months.
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Figure 11. ¥Sr/*Sr ratios as a function of distance from recharge area for water sam-
ples in Gillette and Schoonover areas. Note the regular increase in Sr-isotope ratio for
samples from Upper Wyodak coal zone; this is suggested to reflect water—rock inter-
action along flow path in a well-confined aquifer. The Wyodak Rider samples depart
from this trend, particularly in the Schoonover area, and may reflect incomplete iso-
lation of this coal aquifer from deep sandstone aquifers containing less radiogenic

(lower) 8Sr/%¢Sr ratios. Data from Table 1.

We have obtained water
samples and Sr isotopic composi-
tions for 50 of the wells for which
Colmenares and Zoback (2007)
identified fracture patterns to
determine whether fracture pat-
tern and/or water and gas pro-
duction correlates with #Sr/%¢Sr
ratio. Of these, 47 are vertically
fractured, and 3 are horizontally
fractured. The vertically frac-
tured wells were subdivided into
two groups: those wells that are
high water producers (more than
6,000 bbls/month or 1,000 cubic
meters/month) and those that
are low water producers. Overall,
there appears to be little correla-

tion among Sr isotopic composi-
tion, fracture pattern, or water/gas
ratio. The average #St/*Sr ratio is
only slightly lower for water from
vertically fractured, low water
producers compared to vertically
fractured high water producers
(Fig. 14). However, in the south-
eastern corner of Johnson County,
in the small, 10 km by 10 km
Bullwhacker area (Fig. 2), where
wells have been drilled into the
Wyodak Rider coal zone, the dif-
ferent fracture patterns are associ-
ated with different 8’Sr/*¢Sr ratios.
In this area, the vertically frac-
tured, high water producing wells
have 8’Sr/%¢Sr = 0.71055-0.71271;

vertically fractured, low water pro-
ducing wells have higher ¥Sr/*¢Sr
=0.71200—0.71536; and the one
horizontally fractured well has the
highest ¥St/*¢Sr = 0.71806.

The lack of a strong correla-
tion between #Sr/%¢Sr ratio and
fracture pattern is not surpris-
ing. A correlation would not be
expected unless the fractures pro-
duce hydraulic connections that
allow water to be introduced into
the coal seam from another, iso-
topically distinct aquifer. If the
fractures do not propagate verti-
cally into another aquifer because
no sand horizons are within the
thickness affected by fracturing
(typically 30 meters or 100 feet),
then no excess water production
or perturbation of Sr isotopic ratio
is expected. Moreover, even if
another aquifer were intersected by
the induced fractures, this aquifer
must contain water with a differ-
ent ¥Sr/®Sr ratio in order to affect
the Sr isotopic ratio of the CBNG

produced water.
CONCLUSIONS

The Sr isotopic ratios of
ground waters from coal in the
Powder River Basin of Wyoming
are influenced by a number of fac-
tors including the coal zone from
which ground waters are with-
drawn, ground water residence
time in a particular aquifer, the
degree to which coal aquifers are
confined, and geographic location.
These factors and their effects on
Sr isotopic ratios are summarized
below.

1. The Upper Wyodak coal
zone aquifer in the Gillette and
Schoonover areas appears to be
composed of a combined sand-
and coal-aquifer unit. The ground
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Figure 12. Histograms of water/gas production ratios (bbls/
mcf) for wells completed in Big George, Upper Wyodak,
Anderson, and Canyon coal seams. A greater proportion of wells
completed in Big George coal seam have high water/gas ratios
compared to wells in other coal seams. Data from Table 2.

water of the Upper Wyodak coal zone in these areas
shows a trend of increasing distance from recharge
resulting in more radiogenic ground water due to the
continued dissolution of radiogenic Sr-bearing com-
ponents of the coal. The TDS value of these wells
also increases with increasing distance from recharge
due to water—rock interactions along the flow path.

2. The Wyodak Rider coal zone aquifers in the
Gillette and Schoonover regions are only partially
confined, allowing interactions between sandstone
and possibly other coal aquifers with the Wyodak
Rider aquifer. This interaction results in a departure
from the Upper Wyodak trend with the Wyodak
Rider samples showing increased variability with
increased distance from the recharge. Wells in the
Schoonover area, where the 8Sr/*°Sr and TDS vari-
ability are more pronounced, also produce, on aver-
age, more water than wells from the Gillette Wyodak
Rider. Likewise, wells in the Schoonover area may
not be completely confined.

3. The ¥St/*Sr ratios of the coal-aquifer ground
water from the Northeast area are more variable than
in the Gillette area and may be influenced by the
presence of faults. Produced water with low ¥ Sr/*¢Sr
ratios may be influenced by faults apparently acting
as conduits for water flow enabling mixing of water
from different aquifers. Some samples from the
Sheridan area also exhibit low Sr isotopic ratios, and
faults in this area also may enhance recharge and
flow rates. The low *St/*Sr ratio produced water in
the Northeast area is associated with higher gas pro-
duction than the high ¥St/*¢Sr ratio produced water,
suggesting the possibility that the Sr isotopic ratio of
water samples from newly drilled wells may help pre-
dict the future gas production from the well.

4. Depositional environment may play an impor-
tant role in the Sr isotope ratio of ground water
throughout the basin. Previous research has identi-
fied multiple sources in the surrounding Laramide
uplifts for the sediments that compose the Fort Union
and Wasatch Formations of the basin. These sources
have highly variable ratios of #Sr/*¢St, which may be
imparted to the ground waters from each of these
areas. In the western part of the basin, in vicinities of
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Table 2. Water and gas production for wells analyzed in this study (continued on pages 170-171).

Sample Well . Watef Gas Production ~ Water/Gas Ratio Hydraulic
Coal Name Coal Zone Completion Production [ | Fracture

Name Date! (Bblsmo)! (Mcf/mo) (Bbls/mcf) Pattern®
BD2BU Anderson Upper Wyodak 4/13/06 0 0

N24U Anderson Upper Wyodak 10/3/00 31,301 176,287 0.2

G34U Anderson Upper Wyodak 11/18/99 109,946 175,972 0.6

N32U Anderson Upper Wyodak 8/13/99 159,266 245,232 0.6

N5L Anderson Upper Wyodak 5/26/99 80,840 105,990 0.8

NOU Anderson Upper Wyodak 6/12/03 271,517 304,034 0.9

SH3U Anderson Upper Wyodak 12/4/99 145,994 112,883 1.3

G19U Anderson Upper Wyodak 2/9/99 116,349 78,148 1.5

N31W Anderson Wyodak Rider 1/17/01 89,064 46,341 1.9

G31U Anderson Upper Wyodak 8/23/99 240,314 108,736 2.2

G16U Anderson Upper Wyodak 12/16/98 178,509 73,549 2.4

G32U Anderson Upper Wyodak 917199 543,279 156,808 3.5

G29U Anderson Upper Wyodak 5/11/99 308,452 67,223 4.6

N12U Anderson Upper Wyodak 1/3/00 166,618 21,140 7.9

GoU Anderson Upper Wyodak 5/31/98 968,824 121,805 8.0

N11U Anderson Upper Wyodak 8/10/99 594,698 60,797 9.8

N33U Anderson Upper Wyodak 8/25/00 122,656 9,321 13.2

G7U Anderson Upper Wyodak 12/6/96 1,017,185 69,006 14.7

N29W Anderson Lower Wyodak Rider 5123105 59,186 3,479 17.0

N16L Anderson Lower Wyodak 3/21/00 11,058 462 23.9

G8U Anderson Upper Wyodak 7118197 1,774,782 69,434 25.6

G27W Anderson Wyodak Rider 6/1/99 186,907 5,645 33.1

N28U Anderson Lower Upper Wyodak 6/3/05 70,009 1,861 37.6

G26W Anderson Wyodak Rider 6/28/99 680,020 9,615 70.7
BD3BU Anderson Upper Wyodak 3/30/06 3,789 0
BD5BU Anderson Upper Wyodak 3/26/06 4,435 0
BD8AU Anderson Upper Wyodak 3/20/06 0 0
BW17W Big George Wyodak Rider 2/11/05 25,348 125,838 0.2 V-L

SOW Big George Wyodak Rider 9/26/03 247,186 1,212,450 0.2 V-L
S14W Big George Wyodak Rider 6/15/05 47,102 132,770 0.4 V-L
BW16W Big George Wyodak Rider 2/10/05 91,601 231,960 0.4 V-L
BW21W Big George Wyodak Rider 217105 67,249 125,554 0.5 V-L
BW15W Big George Wyodak Rider 2/14/05 94,605 161,042 0.6 V-L
G65W Big George Wyodak Rider 11/30/99 175,859 173,191 1.0

G53W Big George Wyodak Rider 8/3/01 179,334 170,797 1.0 V-L
G57W Big George Wyodak Rider 7/26/01 198,495 183,931 1.1 V-L
G51W Big George Wyodak Rider 7/10/01 205,444 159,121 1.3 V-L
G43W Big George Wyodak Rider 3/13/01 113,115 86,406 1.3 V-L
G55W Big George Wyodak Rider 4/30/01 198,331 142,405 1.4 V-L
G58W Big George Wyodak Rider 5/30/01 124,942 77,122 1.6 V-L

S6W Big George Wyodak Rider 3/17/99 78,057 46,399 1.7

S5W Big George Wyodak Rider 12/5/03 64,803 37,848 1.7 V-L
G47W Big George Wyodak Rider 2/27/01 33,607 17,993 1.9 H-L
BW18W Big George Wyodak Rider 1/24/05 193,959 102,829 1.9 V-H
BW12W Big George Wyodak Rider 1/31/05 158,976 66,911 2.4 V-H
G56W Big George Wyodak Rider 6/11/01 169,790 71,022 2.4 V-L
G48W Big George Wyodak Rider 3/12/01 76,012 30,891 2.5 H-L
G52W Big George Wyodak Rider 5/22/01 157,409 56,594 2.8 V-L
S15W Big George Wyodak Rider 6/20/05 94,197 31,969 2.9 V-L
S13W Big George Wyodak Rider 8/16/05 27,966 8,351 3.3 V-L
G50W Big George Wyodak Rider 7/20/01 222,043 66,262 3.4 V-L
G6OW Big George Wyodak Rider 5/14/01 209,259 52,521 4.0 V-L
BW4W Big George Wyodak Rider 1/18/05 226,831 53,860 4.2 V-H
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Table 2. Water and gas production for wells analyzed in this study (continued).

Well Water Hydraulic
Sample Comopletion Production Gas Production ~ Water/Gas Ratio Fracture
Name Coal Name Coal Zone Date! (Bblsmo)! (Mcf/mo)" (Bbls/mcf)? Pattern®
GG63W Big George Wyodak Rider 8/18/99 704,401 142,119 5.0
SIIW Big George Wyodak Rider 5125105 67,889 8,790 7.7 V-L
S3W Big George Wyodak Rider 8/24/00 699,414 72,258 9.7 V-H
G46U Big George Upper Wyodak 4/23/01 43,105 3,683 11.7
BWI11W Big George Wyodak Rider 7115/05 249,760 17,769 14.1 V-H
S2wW Big George Wyodak Rider 8/21/00 602,820 41,235 14.6 V-H
BW5W Big George Wyodak Rider 1/20/05 268,360 18,331 14.6 V-H
BWIW Big George Wyodak Rider 3/29/05 276,075 18,366 15.0 V-H
BW19W Big George Wyodak Rider 1/12/05 256,541 16,977 15.1 V-H
BW3W Big George Wyodak Rider 1/25/05 260,618 17,217 15.1 V-H
S4W Big George Wyodak Rider 10/4/00 469,688 29,216 16.1
BW14W Big George Wyodak Rider 2/24/05 236,336 11,783 20.1 V-H
S10W Big George Wyodak Rider 3/16/05 449,245 20,420 22.0 V-H
BW7W Big George Wyodak Rider 4/6/05 163,870 7,265 22.6 V-H
BW22W Big George Wyodak Rider 8/10/05 226,108 7,971 28.4
BW10W Big George Wyodak Rider 4/7/05 185,207 5,424 34.1 V-H
S12W Big George Wyodak Rider 71505 25,847 700 36.9 V-L
BW20W Big George Wyodak Rider 1/18/05 179,012 3,843 46.6 V-H
BWI1W Big George Wyodak Rider 1/12/05 310,776 4,208 73.9 V-H
S7TW Big George Wyodak Rider 7/5/00 1,774,190 21,393 82.9
BW13W Big George Wyodak Rider 2/21/05 197,063 1,178 167.3 V-H
G44U Big George Upper Wyodak 4/16/01 145,396 684 212.6
BW6W Big George Wyodak Rider 4/26/05 220,471 633 348.3 H-H
G33W Big George Wyodak Rider 11/3/99 223,105 583 382.7
BW2W Big George Wyodak Rider 2/7105 170,360 407 418.6 V-H
BW8W Big George Wyodak Rider 4/5/05 189,931 266 714.0 V-H
G45U Big George Upper Wyodak 4/9/01 210,740 259 813.7
G18U Big George Upper Wyodak 11/2/98 438,107 25 little gas
G41W Big George Wyodak Rider 514100 1,083,991 0 no gas
G66W Big George Wyodak Rider 3/22/01 59,363 0 no gas
S8W Big George Wyodak Rider 6/29/01 182,915 0 no gas
B3F Bull Creek Felix 12/3/99 58,471 0 no gas
B7LD Bull Creek Lake De Smit 12/7/00 2,405 15 160.3
G59U Canyon Upper Wyodak 5/28/03 72,843 196,464 0.4 V-L
N6L Canyon Lower Wyodak 3/29/99 190,086 219,243 0.9
N7U Canyon Upper Wyodak 6/21/99 138,656 125,610 1.1
N25U Canyon Upper Wyodak 5/18/05 119,114 69,019 1.7
N8L Canyon Lower Wyodak 5/20/03 349,685 129,604 2.7
N23U Canyon Upper Wyodak 1/5/01 79,708 10,733 7.4
G25U Canyon Upper Wyodak 5/11/99 141,868 12,562 11.3
SH1U Carney Upper Wyodak 3/17/99 410,725 35,670 11.5
BDIAL Cook Lower Wyodak 4/6/06 0 0
BDI1BL Cook Lower Wyodak 417106 0 0
BD4AL Cook Lower Wyodak 3/24/06 2,483 0
BD4BL Cook Lower Wyodak 3/25/06 2,483 0
BD7AL Cook Lower Wyodak 3/29/06 0 0
BD7BL Cook Lower Wyodak 3/30/06 0 0
BDI10AL Cook Lower Wyodak 3/22/06 3,262 0
BD10BL Cook Lower Wyodak 3/22/06 3,262 0
N10L Cook Lower Wyodak 10/19/99 308,219 296,916 1.0
NI19L Cook Lower Wyodak 12/19/00 222,890 105,917 2.1
N21L Cook Lower Wyodak 9/14/00 503,291 8,253 61.0
N22U Cook Upper Wyodak 11/7/00 59,655 211,876 0.3
N26K Cook Knobloch 5/23/05 243,665 339 718.8
B4F Felix Felix 11/15/99 49,768 0 no gas
G10U Fort Union Upper Wyodak 12/18/97 639,031 277,089 2.3
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Table 2. Water and gas production for wells analyzed in this study (continued).

Well Water Hydraulic
Sample Completion Production Gas Production ~ Water/Gas Ratio Fracture
Name Coal Name Coal Zone Date! (Bblsmo)* (Mcf/mo)* (Bbls/mcf)? Pattern®
G14U Fort Union Upper Wyodak 6/15/98 403,374 445,701 0.9
N3L Lower Canyon Lower Wyodak 5/30/98 262,714 38,879 6.8
SH2U Monarch Upper Wyodak 3/23/99 368,481 11,062 33.3
SH4L Monarch Lower Wyodak 2/17100 471,213 330,768 1.4
N4L Pawnee Lower Wyodak 2/10/99 104,683 44,537 2.4
G12K Pawnee/Cache Knobloch 8/9/99 225,683 0 no gas
BILD Ucross Lake De Smit 1/17/00 36,862 0 no gas
B2LD Ucross Lake De Smit 917199 108,971 129 844.7
B6LD Ucross Lake De Smit 3/27/01 287 0 no gas
N14U Upper Canyon Upper Wyodak 2/16/00 93,530 300,176 0.3
N18U Upper Canyon Upper Wyodak 1/4/01 117,648 170,351 0.7
BSF Upper Felix Felix 3/12/01 27,496 0 no gas
BDG6AL Wall Lower Wyodak 3/8/06 0 0
BD9AL Wall Lower Wyodak 3/9/06 0 0
N15L Wall Lower Wyodak 1/13/00 129,731 107,168 1.2
N17L Wall Lower Wyodak 8/16/00 1,417,653 11,059 128.2
N20L Wall Lower Wyodak 12/19/00 135,922 61,558 2.2
N27L Wall Lower Wyodak 5/3/05 197,061 0 no gas
N30K Wall Knobloch 7/19/00 355,376 0 no gas
S1U Wall Upper Wyodak 9/21/89 322,501 333 968.5
N13K Wall/Pawnee Knobloch 11/4/99 212,441 36,464 5.8
G62U Wyodak Upper Wyodak 8/6/98 178,596 534,643 0.3
G24U Wyodak Upper Wyodak 6/28/99 133,624 192,863 0.7
G4U Wyodak Upper Wyodak 6/14/96 185,393 258,313 0.7
G21U Wyodak Upper Wyodak 2/11/99 302,648 420,034 0.7
G20U Wyodak Upper Wyodak 2/1/99 316,751 439,084 0.7
G28W Wyodak Wyodak Rider 3/4/99 438,787 570,071 0.8
G30U Wyodak Upper Wyodak 8/6/99 522,576 505,167 1.0
G11U Wyodak Upper Wyodak 1/21/98 289,224 264,160 1.1
G54U Wyodak Upper Wyodak 5/10/01 141,861 124,152 1.1 V-L
G23U Wyodak Upper Wyodak 1/29/99 424,118 276,469 1.5
G2U Wyodak Upper Wyodak 4/11/95 401,219 249,271 1.6
G17U Wyodak Upper Wyodak 11/2/98 1,269,443 780,749 1.6
G37U Wyodak Upper Wyodak 4/12/00 177,898 100,597 1.8 V-L
G6U Wyodak Upper Wyodak 11/23/96 388,341 180,140 2.2
G49U Wyodak Upper Wyodak 10/26/00 206,900 95,596 2.2 V-L
G3U Wyodak Upper Wyodak 415196 477,164 211,107 2.3
G39U Wyodak Upper Wyodak 7/18/00 217,490 68,309 3.2 V-L
G1U Wyodak Upper Wyodak 2/10/93 1,273,509 387,359 3.3
G22U Wyodak Upper Wyodak 1/27/99 709,555 150,555 4.7
G64U Wyodak Upper Wyodak 5/26/99 912,817 191,734 4.8
G61U Wyodak Upper Wyodak 5/20/98 742,141 85,480 8.7
G5U Wyodak Upper Wyodak 10/15/96 790,452 67,914 11.6
G13U Wyodak Upper Wyodak 6/22/98 824,389 45,816 18.0
G36U Wyodak Upper Wyodak 4/5/00 399,984 13,602 29.4
N1U Wyodak Upper Wyodak 1/30/90 2,512,405 57,071 44.0
G15U Wyodak Upper Wyodak 6/10/97 1,379,519 26,330 52.4
G38U Wyodak Upper Wyodak 4/7/00 138,415 1,503 92.1
G42U Wyodak Upper Wyodak 5/25/00 284,509 879 323.7 V-L
G35U Wyodak Upper Wyodak 9/15/00 154,770 6 little gas
G40U Wyodak Upper Wyodak 4/27100 154,251 0 no gas V-L
'Production data from the Wyoming Oil and Gas Conservation Commission (2007).
*Water/gas ratios indicated only for wells more than 2 years old.
*Hydraulic fracture pattern as identified by Colmenares and Zoback (2007).
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Figure 13. 8Sr/%Sr ratios as a function of distance from recharge area for water
samples in northeast area. These data form two groups that correspond to distinct
geographic areas; one plots above Gillette trend and the other below. The group of
samples lying above Gillette Sr-isotopic trend have comparatively low TDS, whereas
samples lying below Gillette trend have higher TDS and lower #St/%Sr ratios. Coals
yielding latter group of water samples may be affected by faults that act as conduits to
ground-water flow. Data from Table 1.
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Figure 14. Water/gas production ratios for wells with known fracture patterns as a
function of ¥Sr/%Sr ratios. V-H = vertical high-water producing wells; V-L = verti-
cally fractured low water-producing wells; H-L = horizontally fractured, low-water
producing wells; and H-H = horizontally fractured, high water-producing wells. Data
from Tables 1, 2, and Wyoming Oil and Gas Commission (2007).

Buffalo and Sheridan, CBNG pro-
duced waters tend to have lower
87Sr/%°Sr ratios than those in the
central and eastern margin of the
basin, the Northeast, Schoonover,
and Gillette areas. Temporal
changes in depositional environ-
ment may explain the higher Sr
isotopic ratios of water withdrawn
from the Lake DeSmet coal zone
compared to the underlying Felix
coal zone in the vicinity of Buffalo.
We also note that the water and
gas production from the Eocene
coals appears to be significantly
lower than that of the Paleocene
coals. That conclusion is based on
a limited number of samples, how-
ever, and additional evaluation is
warranted.

5. Evaluating the direction
of fractures propagated during
the water-enhancement process,
coupled with the ¥Sr/*¢Sr of the
produced water, may be useful in
evaluating wells with minimal gas
production and high water pro-
duction. Vertically fractured coal
seams where sandstone is present
within 30 meters (100 feet) above
or below the coal are most likely
to be in hydraulic communication
with sandstone aquifers. However,
water from two aquifers must have
distinctive Sr isotope ratios in
order for the direction of fracture
propagation to be correlated with
the Sr isotopic ratio of the pro-
duced water.
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